The aim of this study was to gain a better understanding of the functioning of the aquifer system and springs in the Pala basin through hydrochemical and isotopic analyses. Thirteen samples were analyzed, including two rainwater samples, three spring samples and eight borehole samples. The stable isotopic composition (2H and 18O) of rainwater shows that it is virtually unaffected by evaporation as it falls. Groundwater d-excess values are high, with an average of 11.28 ‰, and all samples have values higher than the local rainfall average of 7.99 ‰. This result suggests direct infiltration of precipitation of oceanic and slightly continental origin, through a favourable geological context. The isotopic study shows that there are two different recharge periods: a cold, wet period with a depletion in 18O and the current period. Around borehole E2, the oldest with a tritium content of 1.8 TU, recharge took place during this cold period. The other waters are the result of mixing with waters from the current period. The springs observed in the study area come from Sotouba sandstone aquifers after erosion exposed the piezometric water level in the Kou basin, hence their origin. Most of the boreholes tap the aquifers of both geological formations, which makes it difficult to distinguish the water from these two aquifers by analysis.
Published in | Journal of Water Resources and Ocean Science (Volume 13, Issue 4) |
DOI | 10.11648/j.wros.20241304.12 |
Page(s) | 105-115 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Pala, Taoudéni, Isotopic, Spring, Groundwater, Recharge
[1] | I. D. Clark et P. Fritz, Environmental isotopes in hydrogeology. Boca Raton, FL: CRC Press/Lewis Publishers, 1997. |
[2] | D. Dakouré, «Étude hydrogéologique et géochimique de la bordure Sud-Est du bassin sédimentaire de Taoudeni (Burkina Faso - Mali) - Essai de modélisation», Université Paris VI - Pierre et Marie Curie, Paris, 2003. |
[3] | H. C. Emvoutou et al., « Hydrochemical and isotopic studies providing a new functional model for the coastal aquifers in Douala Coastal Sedimentary Basin (DCSB)/Cameroon», Science of The Total Environment, vol. 912, p. 169412, déc. 2023. |
[4] | J. R. Gat, «Oxygen and hydrogen isotopes in the hydrologic cycle», 1996. |
[5] | I. KI, «Evaluation de la recharge des nappes souterraines du bassin de Tamassari (Bassin de Taoudéni) par l’utilisation des techniques spatiales (Géomatique), hydrogéochimiques et isotopiques», Ecole Nationale d’Ingénieurs de Tunis de l’Université Tunis El Manar et l’Université Joseph KI-ZERBO du Burkina Faso, Tunis et Ouagadougou, 2023. |
[6] | M. Kralik, «How to Estimate Mean Residence Times of Groundwater», Procedia Earth and Planetary Science, vol. 13, p. 301-306, 2015. |
[7] | P. Négrel et E. Petelet-Giraud, «Isotopes in groundwater as indicators of climate changes», TrAC Trends in Analytical Chemistry, vol. 30, no 8, p. 1279-1290, Sept. 2011. |
[8] |
L. Araguas-Araguas, K. Froehlich, et K. Rozanski, «Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture», Hydrol. Process., vol. 14, no 8, p. 1341-1355, juin 2000,
https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z |
[9] | S. Mahlangu, S. Lorentz, R. Diamond, et M. Dippenaar, «Surface water-groundwater interaction using tritium and stable water isotopes: A case study of Middelburg, South Africa», Journal of African Earth Sciences, vol. 171, p. 103886, nov. 2020. |
[10] | M. Masiol et al., «Spatial distribution and interannual trends of δ18O, δ2H, and deuterium excess in precipitation across North-Eastern Italy», Journal of Hydrology, vol. 598, p. 125749, juill. 2021. |
[11] | H. Wanke, M. Gaj, M. Beyer, P. Koeniger, et J. T. Hamutoko, «Stable isotope signatures of meteoric water in the Cuvelai-Etosha Basin, Namibia: Seasonal characteristics, trends and relations to southern African patterns», Isotopes in Environmental and Health Studies, vol. 54, no 6, p. 588-607, nov. 2018. |
[12] | N. M. Dieng, P. Orban, J. Otten, C. Stumpp, S. Faye, et A. Dassargues, «Temporal changes in groundwater quality of the Saloum coastal aquifer», Journal of Hydrology: Regional Studies, vol. 9, p. 163-182, févr. 2017, |
[13] | J. Ch. Fontes, «Environmental isotopes in groundwater hydrology», in The Terrestrial Environment, A, Elsevier, 1980, p. 75-140. |
[14] | S. Y. Ganyaglo et al., «Groundwater residence time in basement aquifers of the Ochi-Narkwa Basin in the Central Region of Ghana», Journal of African Earth Sciences, vol. 134, p. 590-599, oct. 2017. |
[15] | D. H. Madioune et al., «Application of isotopic tracers as a tool for understanding hydrodynamic behavior of the highly exploited Diass aquifer system (Senegal)», Journal of Hydrology, vol. 511, p. 443-459, avr. 2014, |
[16] | M. Balasubramanian et al., «Isotopic signatures, hydrochemical and multivariate statistical analysis of seawater intrusion in the coastal aquifers of Chennai and Tiruvallur District, Tamil Nadu, India», Marine Pollution Bulletin, vol. 174, p. 113232, 2022, |
[17] | O. Dhaoui, I. M. H. R. Antunes, C. Boente, B. Agoubi, et A. Kharroubi, «Hydrogeochemical processes on inland aquifer systems: A combined multivariate statistical technique and isotopic approach», Groundwater for Sustainable Development, vol. 20, p. 100887, 2023. |
[18] | K. A. R. Kpegli, A. Alassane, S. E. A. T. M. Van Der Zee, M. Boukari, et D. Mama, «Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin», Journal of Hydrology: Regional Studies, vol. 18, p. 50-67, août 2018. |
[19] | A. Vengosh, J. Gill, M. Lee Davisson, et G. Bryant Hudson, «A multi‐isotope (B, Sr, O, H, and C) and age dating (3H– 3He and 14C) study of groundwater from Salinas Valley, California: Hydrochemistry, dynamics, and contamination processes», Water Resources Research, vol. 38, no 1, janv. 2002. |
[20] | J. Derouane, «Modélisation hydrogéologique du bassin sédimentaire», SAWES-SOFRECO, 2008. |
[21] | D. Giovenazzo, A. Ouédraogo, K. A. A. HIEN, P. I. Ouédraogo, R. DAHL, et Y. SOUNTRA, «Carte de synthèse géologique, structurale et des substances minérales du Burkina Faso à 1/1 000 000», 2018. |
[22] | P. Gombert, «Synthèse sur la géologie et l’hydrogéologie de la zone sédimentaire RESO», RESO, 1998. |
[23] | C. Ouédraogo, «Synthèse géologique de la région ouest du Burkina Faso», 2006. |
[24] | SOGREAH Ingénierie, «Etude des ressources en eau souterraines de la région de Bobo Dioulasso», Sogreah, 1994. |
[25] | F. Huneau et al., «Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali)», Journal of Hydrology, vol. 409, no 1-2, p. 423-439, oct. 2011. |
[26] | G. Hottin et O. F. Ouédraogo, Carte géologique à 1/1000000 de la République de Haute-Volta: Notice explicative. Direction de la géologie et des mines, 1975. [En ligne]. Disponible sur: |
[27] | M. Talbaoui, «Etude des périmètres de protection des sources de Nasso et des forages de l’ONEA», SOFRECO-SAWES, Ouagadougou, 2009. |
[28] | T. B. Coplen, «Normalization of oxygen and hydrogen isotope data», Chemical Geology: Isotope Geoscience section, vol. 72, no 4, p. 293-297, juin 1988. |
[29] | H. Craig, «Isotopic Variations in Meteoric Waters», Science, vol. 133, no 3465, p. 1702-1703, mai 1961. |
[30] | W. Dansgaard, «Stable isotopes in precipitation», Tellus, vol. 16, no 4, p. 436-468, nov. 1964. |
[31] | Y. Koussoube, «Hydrogéologie des séries sédimentaires de la dépression piézométrique du Gondo (bassin du Sourou): Burkina Faso / Mali», Université Paris VI - Pierre et Marie Curie, 264p, 2010. |
[32] | M. J. D. Taupin et al., «Gestion intégrée et durable des systèmes aquifères et des bassins partagés de la région du Sahel», RAF/7/011, 2017. |
[33] | A. A. Barry, «Étude biogéochimique et isotopique dans les eaux souterraines au voisinage des décharges d’ordures en milieu fracturé et urbain: cas de la commune de Ouagadougou (Burkina Faso)», Université d’Avignon et Université Joseph KI-ZERBO, Ouagadougou, 258p, 2023. |
[34] | D. Adomako, A. Gibrilla, P. Maloszewski, S. Y. Ganyaglo, et S. P. Rai, «Tracing stable isotopes (δ2H and δ18O) from meteoric water to groundwater in the Densu River basin of Ghana», Environ Monit Assess, vol. 187, no 5, p. 264, mai 2015. |
[35] | S. Valdivielso, J. Murray, E. Custodio, A. Hassanzadeh, D. E. Martínez, et E. Vázquez-Suñé, «Seasonal and isotopic precipitation patterns in the semi-arid and high mountain areas», Science of The Total Environment, vol. 925, p. 171750, 2024. |
[36] | M. J. Wirmvem et al., «Shallow groundwater recharge mechanism and apparent age in the Ndop plain, northwest Cameroon», Appl Water Sci, vol. 7, no 1, p. 489-502, mars 2017. |
[37] | Z. Xia, J. Surma, et M. J. Winnick, «The response and sensitivity of deuterium and 17O excess parameters in precipitation to hydroclimate processes», Earth-Science Reviews, vol. 242, p. 104432, 2023. |
[38] | L. Gourcy, A. Brenot, et E. Petelet-Giraud, «Isotopic and geochemical tools for characterizing surface water-groundwater relationships in la Bassée floodplain area (Seine River Basin, France)», 2011. |
[39] | L. Gourcy, J.-F. Aranyossy, J.-C. Olivry, et G. M. Zuppi, «Évolution spatio-temporelle des teneurs isotopiques (δ2H–δ18Ο) des eaux de la cuvette lacustre du fleuve Niger (Mali)», 2000. |
[40] | A. M. S. Babaye, «Evaluation des ressources en eau souterraine dans le bassin de Dargol (Liptako – Niger)», Université de Liège et Université Abdou Moumouni, Liège, 2012. |
[41] | P. D. Sreedevi, P. D. Sreekanth, et D. V. Reddy, «Deuterium Excess of Groundwater as a Proxy for Recharge in an Evaporative Environment of a Granitic Aquifer, South India», J Geol Soc India, vol. 97, no 6, p. 649-655, juin 2021. |
[42] | A. L. Putman, R. P. Fiorella, G. J. Bowen, et Z. Cai, «A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints», Water Resources Research, vol. 55, no 8, p. 6896-6910, août 2019. |
[43] | M. R. Islam et al., «Controls on spatiotemporal variations of stable isotopes in precipitation across Bangladesh», Atmospheric Research, vol. 247, p. 105224, janv. 2021. |
[44] | C. Sun, S. Zhou, et Z. Jing, «Variability of precipitation-stable isotopes and moisture sources of two typical landforms in the eastern Loess Plateau, China», Journal of Hydrology: Regional Studies, vol. 46, p. 101349, 2023. |
[45] | F. Ma, J. Chen, J. Chen, et T. Wang, «Environmental drivers of precipitation stable isotopes and moisture sources in the Mongolian Plateau», Journal of Hydrology, vol. 621, p. 129615, 2023. |
APA Style
Millogo, C., Ki, I., Ouedraogo, I., Nakolendoussé, S. (2024). Hydrogeological Characterisation of a Sedimentary Aquifer and Springs Near the City of Bobo-Dioulasso, Burkina Faso: Isotopic Approaches. Journal of Water Resources and Ocean Science, 13(4), 105-115. https://doi.org/10.11648/j.wros.20241304.12
ACS Style
Millogo, C.; Ki, I.; Ouedraogo, I.; Nakolendoussé, S. Hydrogeological Characterisation of a Sedimentary Aquifer and Springs Near the City of Bobo-Dioulasso, Burkina Faso: Isotopic Approaches. J. Water Resour. Ocean Sci. 2024, 13(4), 105-115. doi: 10.11648/j.wros.20241304.12
@article{10.11648/j.wros.20241304.12, author = {Césard Millogo and Issan Ki and Issoufou Ouedraogo and Samuel Nakolendoussé}, title = {Hydrogeological Characterisation of a Sedimentary Aquifer and Springs Near the City of Bobo-Dioulasso, Burkina Faso: Isotopic Approaches }, journal = {Journal of Water Resources and Ocean Science}, volume = {13}, number = {4}, pages = {105-115}, doi = {10.11648/j.wros.20241304.12}, url = {https://doi.org/10.11648/j.wros.20241304.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wros.20241304.12}, abstract = {The aim of this study was to gain a better understanding of the functioning of the aquifer system and springs in the Pala basin through hydrochemical and isotopic analyses. Thirteen samples were analyzed, including two rainwater samples, three spring samples and eight borehole samples. The stable isotopic composition (2H and 18O) of rainwater shows that it is virtually unaffected by evaporation as it falls. Groundwater d-excess values are high, with an average of 11.28 ‰, and all samples have values higher than the local rainfall average of 7.99 ‰. This result suggests direct infiltration of precipitation of oceanic and slightly continental origin, through a favourable geological context. The isotopic study shows that there are two different recharge periods: a cold, wet period with a depletion in 18O and the current period. Around borehole E2, the oldest with a tritium content of 1.8 TU, recharge took place during this cold period. The other waters are the result of mixing with waters from the current period. The springs observed in the study area come from Sotouba sandstone aquifers after erosion exposed the piezometric water level in the Kou basin, hence their origin. Most of the boreholes tap the aquifers of both geological formations, which makes it difficult to distinguish the water from these two aquifers by analysis. }, year = {2024} }
TY - JOUR T1 - Hydrogeological Characterisation of a Sedimentary Aquifer and Springs Near the City of Bobo-Dioulasso, Burkina Faso: Isotopic Approaches AU - Césard Millogo AU - Issan Ki AU - Issoufou Ouedraogo AU - Samuel Nakolendoussé Y1 - 2024/10/31 PY - 2024 N1 - https://doi.org/10.11648/j.wros.20241304.12 DO - 10.11648/j.wros.20241304.12 T2 - Journal of Water Resources and Ocean Science JF - Journal of Water Resources and Ocean Science JO - Journal of Water Resources and Ocean Science SP - 105 EP - 115 PB - Science Publishing Group SN - 2328-7993 UR - https://doi.org/10.11648/j.wros.20241304.12 AB - The aim of this study was to gain a better understanding of the functioning of the aquifer system and springs in the Pala basin through hydrochemical and isotopic analyses. Thirteen samples were analyzed, including two rainwater samples, three spring samples and eight borehole samples. The stable isotopic composition (2H and 18O) of rainwater shows that it is virtually unaffected by evaporation as it falls. Groundwater d-excess values are high, with an average of 11.28 ‰, and all samples have values higher than the local rainfall average of 7.99 ‰. This result suggests direct infiltration of precipitation of oceanic and slightly continental origin, through a favourable geological context. The isotopic study shows that there are two different recharge periods: a cold, wet period with a depletion in 18O and the current period. Around borehole E2, the oldest with a tritium content of 1.8 TU, recharge took place during this cold period. The other waters are the result of mixing with waters from the current period. The springs observed in the study area come from Sotouba sandstone aquifers after erosion exposed the piezometric water level in the Kou basin, hence their origin. Most of the boreholes tap the aquifers of both geological formations, which makes it difficult to distinguish the water from these two aquifers by analysis. VL - 13 IS - 4 ER -